Isolation of Ku70-binding proteins (KUBs).

نویسندگان

  • C R Yang
  • S Yeh
  • K Leskov
  • E Odegaard
  • H L Hsu
  • C Chang
  • T J Kinsella
  • D J Chen
  • D A Boothman
چکیده

DNA-dependent protein kinase (DNA-PK) plays a critical role in resealing DNA double-stand breaks by non-homologous end joining. Aside from DNA-PK, XRCC4 and DNA ligase IV, other proteins which play a role(s) in this repair pathway remain unknown; DNA-PK contains a catalytic subunit (DNA-PKcs) and a DNA binding subunit (Ku70 and Ku80). We isolated Ku70-binding proteins (KUB1-KUB4) using yeast two-hybrid analyses. Sequence analyses revealed KUB1 to be apolipoprotein J (apoJ), also known as X-ray-inducible transcript 8 (XIP8), testosterone-repressed prostate message-2 (TRPM-2) and clusterin. KUB2 is Ku80. KUB3 and KUB4 are unknown, >10 kb trans-cripts. Interactions of apoJ/XIP8 or KUB3 with Ku70 were confirmed by co-immunoprecipitation analyses in MCF-7:WS8 breast cancer or IMR-90 normal lung fibroblast cells, respectively. The interaction of apoJ/XIP8 with Ku70 was confirmed by far-western analyses. Stable over-expression of full-length apoJ/XIP8 in MCF-7:WS8 caused decreased Ku70/Ku80 DNA end binding that was restored by apoJ/XIP8 monoclonal antibodies. The role of apoJ/XIP8 in ionizing radiation resistance/sensitivity is under investigation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformed Epidermal Autoregulatory Factor-1 (DEAF1) Interacts with the Ku70 Subunit of the DNA-Dependent Protein Kinase Complex

Deformed Epidermal Autoregulatory Factor 1 (DEAF1) is a transcription factor linked to suicide, cancer, autoimmune disorders and neural tube defects. To better understand the role of DEAF1 in protein interaction networks, a GST-DEAF1 fusion protein was used to isolate interacting proteins in mammalian cell lysates, and the XRCC6 (Ku70) and the XRCC5 (Ku80) subunits of DNA dependent protein kina...

متن کامل

CREB-binding protein regulates Ku70 acetylation in response to ionization radiation in neuroblastoma.

Ku70 was originally described as an autoantigen, but it also functions as a DNA repair protein in the nucleus and as an antiapoptotic protein by binding to Bax in the cytoplasm, blocking Bax-mediated cell death. In neuroblastoma (NB) cells, Ku70's binding with Bax is regulated by Ku70 acetylation such that increasing Ku70 acetylation results in Bax release, triggering cell death. Although regul...

متن کامل

Heat shock factor 1, an inhibitor of non-homologous end joining repair

A novel role for HSF1 as an inhibitor of non-homologous end joining (NHEJ) repair activity was identified. HSF1 interacted directly with both of the N-terminal sequences of the Ku70 and Ku86 proteins, which inhibited the endogenous heterodimeric interaction between Ku70 and Ku86. The blocking of the Ku70 and Ku86 interaction by HSF1 induced defective NHEJ repair activity and ultimately activate...

متن کامل

Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors.

Histone deacetylase inhibitors (HDACIs) are therapeutic drugs that inhibit deacetylase activity, thereby increasing acetylation of many proteins, including histones. HDACIs have antineoplastic effects in preclinical and clinical trials and are being considered for cancers with unmet therapeutic need, including neuroblastoma (NB). Uncertainty of how HDACI-induced protein acetylation leads to cel...

متن کامل

Telomere binding of checkpoint sensor and DNA repair proteins contributes to maintenance of functional fission yeast telomeres.

Telomeres, the ends of linear chromosomes, are DNA double-strand ends that do not trigger a cell cycle arrest and yet require checkpoint and DNA repair proteins for maintenance. Genetic and biochemical studies in the fission yeast Schizosaccharomyces pombe were undertaken to understand how checkpoint and DNA repair proteins contribute to telomere maintenance. On the basis of telomere lengths of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 27 10  شماره 

صفحات  -

تاریخ انتشار 1999